Friday, 14 July 2017

ที่แตกต่างกัน ประเภท ของ การเคลื่อนย้าย ค่าเฉลี่ย


OANDA ใช้คุกกี้เพื่อทำให้เว็บไซต์ของเราใช้งานง่ายและปรับแต่งให้เหมาะกับผู้เยี่ยมชมของเรา ไม่สามารถใช้คุกกี้เพื่อระบุตัวคุณได้ เมื่อไปที่เว็บไซต์ของเราคุณยินยอมให้ OANDA8217s ใช้คุกกี้ตามนโยบายความเป็นส่วนตัวของเรา หากต้องการบล็อกลบหรือจัดการคุกกี้โปรดไปที่ aboutcookies. org การ จำกัด คุกกี้จะป้องกันไม่ให้คุณได้รับประโยชน์จากฟังก์ชันการทำงานบางอย่างในเว็บไซต์ของเรา ดาวน์โหลด Apps มือถือของเราเปิดบัญชี ampltiframe src4489469.fls. doubleclickactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 mcesrc4489469.fls. doubleclickactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 width1 height1 frameborder0 styledisplay: ไม่มี mcestyledisplay: noneampgtampltiframeampgt บทที่ 1: การย้ายค่าเฉลี่ยประเภทของการย้ายค่าเฉลี่ยมีหลายประเภทของค่าเฉลี่ยเคลื่อนที่พร้อมที่จะตอบสนองความต้องการที่แตกต่างกันการวิเคราะห์ความต้องการของตลาด . การใช้งานโดยทั่วไปมากที่สุดโดย traders ได้แก่ : Simple Moving Average Weighted Moving ค่าเฉลี่ยการเคลื่อนที่เฉลี่ย Average Average Moving Average (SMA) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยเป็นค่าเฉลี่ยเคลื่อนที่เฉลี่ย โดยคำนวณจากชุดราคา (หรือช่วงเวลาที่รายงาน) โดยเพิ่มราคาเหล่านี้เข้าด้วยกันและหารจำนวนรวมด้วยจำนวนจุดข้อมูล สูตรนี้กำหนดราคาเฉลี่ยและคำนวณในลักษณะที่จะปรับ (หรือเคลื่อนย้าย) เพื่อตอบสนองต่อข้อมูลล่าสุดที่ใช้ในการคำนวณค่าเฉลี่ย ตัวอย่างเช่นหากคุณรวมเฉพาะอัตราแลกเปลี่ยน 15 ครั้งล่าสุดในการคำนวณโดยเฉลี่ยอัตราที่เก่าที่สุดจะลดลงโดยอัตโนมัติทุกครั้งที่มีการเปิดใช้ราคาใหม่ ผลการเปลี่ยนแปลงโดยเฉลี่ยในแต่ละราคาใหม่จะรวมอยู่ในการคำนวณและทำให้มั่นใจได้ว่าค่าเฉลี่ยจะขึ้นอยู่กับเฉพาะ 15 ราคาล่าสุดเท่านั้น ด้วยการทดลองและข้อผิดพลาดเพียงเล็กน้อยคุณสามารถกำหนดค่าเฉลี่ยเคลื่อนที่ที่เหมาะสมกับกลยุทธ์การซื้อขายของคุณได้ จุดเริ่มต้นที่ดีคือค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยตามราคาล่าสุด 20 ราคา ค่าเฉลี่ยถ่วงน้ำหนัก (Weighted Moving Average - WMA) ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักคำนวณด้วยวิธีเดียวกับค่าเฉลี่ยเคลื่อนที่แบบเรียบ แต่ใช้ค่าที่ถ่วงน้ำหนักเป็นเส้นตรงเพื่อให้แน่ใจว่าอัตราล่าสุดมีผลกระทบมากที่สุดต่อค่าเฉลี่ย ซึ่งหมายความว่าอัตราที่เก่าแก่ที่สุดที่รวมอยู่ในการคำนวณจะได้รับน้ำหนัก 1 ค่าที่เก่าสุดต่อไปจะได้รับน้ำหนัก 2 และค่าที่เก่าที่สุดถัดไปจะได้รับน้ำหนัก 3 ตลอดจนอัตราล่าสุด ผู้ค้าบางรายพบว่าวิธีนี้เกี่ยวข้องกับการกำหนดแนวโน้มโดยเฉพาะอย่างยิ่งในตลาดที่มีการเคลื่อนไหวอย่างรวดเร็ว ข้อเสียในการใช้ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักคือเส้นค่าเฉลี่ยที่เกิดขึ้นอาจต่ำกว่าค่าเฉลี่ยเคลื่อนที่ที่แท้จริง อาจทำให้ยากต่อการพิจารณาแนวโน้มตลาดจากความผันผวน ด้วยเหตุนี้ผู้ค้าบางรายจึงชอบที่จะวางค่าเฉลี่ยเคลื่อนที่เฉลี่ยและค่าเฉลี่ยถ่วงน้ำหนักที่เคลื่อนไหวอยู่ในกราฟราคาเดียวกัน กราฟราคาเชิงเทียนที่มีค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักเฉลี่ยถ่วงน้ำหนัก (EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนาคล้ายคลึงกับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ แต่ในขณะที่ค่าเฉลี่ยเคลื่อนที่ที่ถอยหลังไปเร็วที่สุดจะเป็นราคาใหม่ ค่าเฉลี่ยของช่วงที่ผ่านมาทั้งหมดโดยเริ่มจากจุดที่คุณระบุ ตัวอย่างเช่นเมื่อคุณเพิ่มการซ้อนทับค่าเฉลี่ยที่เป็นค่าเฉลี่ยของการเคลื่อนที่แบบเสวนาไปเป็นกราฟราคาคุณจะกำหนดจำนวนรอบการรายงานที่จะรวมไว้ในการคำนวณ สมมติว่าคุณระบุราคาล่าสุด 10 รายการ การคำนวณครั้งแรกนี้จะตรงกับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆตามระยะเวลาการรายงาน 10 ครั้ง แต่เมื่อมีการใช้ราคาถัดไปการคำนวณใหม่จะยังคงมีราคาเดิม 10 ราคาบวกราคาใหม่เพื่อให้ได้ค่าเฉลี่ย ซึ่งหมายความว่าปัจจุบันมีการรายงาน 11 งวดในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเสวนาในขณะที่ค่าเฉลี่ยเคลื่อนที่เฉลี่ยจะขึ้นอยู่กับเพียง 10 อันดับล่าสุดเท่านั้น ตัดสินใจว่าจะใช้ค่าเฉลี่ยเคลื่อนที่เพื่อพิจารณาว่าค่าเฉลี่ยเคลื่อนที่ใดที่ดีที่สุดสำหรับคุณคุณต้องเข้าใจความต้องการของคุณก่อน หากวัตถุประสงค์หลักของคุณคือการลดเสียงรบกวนของราคาผันผวนอย่างต่อเนื่องเพื่อกำหนดทิศทางตลาดโดยรวมแล้วค่าเฉลี่ยเคลื่อนที่ที่แท้จริงของอัตรา 20 ครั้งล่าสุดอาจให้ระดับรายละเอียดที่คุณต้องการ หากคุณต้องการให้ค่าเฉลี่ยเคลื่อนที่ของคุณให้ความสำคัญกับอัตราล่าสุดจะมีค่าเฉลี่ยถ่วงน้ำหนักที่เหมาะสมกว่า อย่างไรก็ตามโปรดทราบว่าเนื่องจากค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักได้รับผลกระทบมากที่สุดจากราคาล่าสุดรูปร่างของเส้นเฉลี่ยอาจบิดเบี้ยวอาจส่งผลต่อการสร้างสัญญาณผิดพลาด เมื่อทำงานกับค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักคุณต้องเตรียมพร้อมสำหรับความผันผวนมากขึ้น ค่าเฉลี่ยเคลื่อนที่เฉลี่ยถ่วงน้ำหนัก 169 1996 - 2017 OANDA Corporation สงวนลิขสิทธิ์. ตระกูล OANDA, fxTrade และ OANDAs fx เป็นของ OANDA Corporation เครื่องหมายการค้าอื่น ๆ ที่ปรากฎในเว็บไซต์นี้เป็นทรัพย์สินของเจ้าของที่เกี่ยวข้อง การทำสัญญาซื้อขายเงินตราต่างประเทศกับสัญญาซื้อขายเงินตราต่างประเทศหรือผลิตภัณฑ์อื่น ๆ ที่ไม่มีการแลกเปลี่ยนเงินตราต่างประเทศมีความเสี่ยงสูงและอาจไม่เหมาะสมสำหรับทุกคน เราแนะนำให้คุณพิจารณาอย่างรอบคอบว่าการซื้อขายมีความเหมาะสมกับคุณหรือไม่ในแง่ของสถานการณ์ส่วนบุคคลของคุณ คุณอาจสูญเสียมากกว่าที่คุณลงทุน ข้อมูลในเว็บไซต์นี้มีลักษณะทั่วไป เราขอแนะนำให้คุณแสวงหาคำแนะนำด้านการเงินที่เป็นอิสระและมั่นใจได้ว่าคุณเข้าใจถึงความเสี่ยงทั้งหมดที่เกี่ยวข้องก่อนการซื้อขาย การซื้อขายผ่านแพลตฟอร์มออนไลน์ถือเป็นความเสี่ยงเพิ่มเติม ดูส่วนกฎหมายของเราที่นี่ การแพร่กระจายการแพร่กระจายทางการเงินจะใช้ได้เฉพาะกับลูกค้า OANDA Europe Ltd ที่อาศัยอยู่ในสหราชอาณาจักรหรือสาธารณรัฐไอร์แลนด์เท่านั้น CFDs ความสามารถในการป้องกันความเสี่ยงด้านราคาของ MT4 และอัตราส่วน Leverage Ratio เกิน 50: 1 ไม่สามารถใช้ได้กับชาวอเมริกัน ข้อมูลในไซต์นี้ไม่ใช่ข้อมูลที่อยู่ในประเทศที่การแจกจ่ายหรือการใช้โดยบุคคลใด ๆ จะขัดต่อกฎหมายหรือข้อบังคับของท้องถิ่น OANDA Corporation เป็นตัวแทนซื้อขายสัญญาซื้อขายล่วงหน้าของ Futures Commission และตัวแทนจำหน่ายรายย่อยที่จดทะเบียนกับ Commodity Futures Trading Commission และเป็นสมาชิกของ National Futures Association หมายเลข: 0325821 โปรดดูที่ ALFA FOREX INVESTOR ALFA ของ NFAs ตามความเหมาะสม บัญชี ULC ของ OANDA (Canada) Corporation มีให้สำหรับทุกคนที่มีบัญชีธนาคารของแคนาดา OANDA (Canada) Corporation ULC มีการกำกับดูแลโดยองค์การการลงทุนของอุตสาหกรรมการกำกับดูแลของแคนาดา (IIROC) ซึ่งรวมถึงฐานข้อมูลการตรวจสอบของที่ปรึกษาออนไลน์ IIROCs (IIROC AdvisorReport) และบัญชีลูกค้าได้รับการคุ้มครองโดย Canadian Investor Protection Fund ภายในวงเงินที่ระบุ โบรชัวร์ที่อธิบายถึงลักษณะและขอบเขตของความคุ้มครองจะมีให้ตามคำขอหรือที่ cipf. ca OANDA Europe Limited เป็น บริษัท จดทะเบียนในประเทศอังกฤษที่หมายเลข 7110087 และมีที่อยู่จดทะเบียนตั้งอยู่ที่ชั้น 9a, Tower 42, 25 Old Broad St, London EC2N 1HQ ได้รับมอบอำนาจและควบคุมโดยผู้ควบคุมการแข่งขันทางการเงิน เลขที่: 542574 OANDA Asia Pacific Pte Ltd (บริษัท จดทะเบียนเลขที่ 200704926K) มีใบอนุญาตให้บริการตลาดทุนซึ่งออกโดยธนาคารกลางสิงคโปร์และได้รับอนุญาตจาก International Enterprise Singapore OANDA Australia Pty Ltd 160 ถูกควบคุมโดย Australian Securities and Investment Commission ASIC (ABN 26 152 088 349, AFSL No. 412981) และเป็นผู้ออกผลิตภัณฑ์หรือบริการบนเว็บไซต์นี้ สิ่งสำคัญสำหรับคุณในการพิจารณาคู่มือการให้บริการทางการเงินในปัจจุบัน (FSG) คำชี้แจงการเปิดเผยข้อมูลผลิตภัณฑ์ (PDS) ข้อกำหนดบัญชีและเอกสาร OANDA ที่เกี่ยวข้องอื่น ๆ ก่อนตัดสินใจลงทุนทางการเงิน เอกสารเหล่านี้สามารถพบได้ที่นี่ บริษัท OANDA Japan Co. , Ltd. First Type I Financial Instruments ผู้อำนวยการสำนักงาน Kanto Local Financial Bureau (Kin-sho) เลขที่ 2137 สถาบัน Financial Futures Association หมายเลข 1571 Trading FX andor CFDs for margin มีความเสี่ยงสูงและไม่เหมาะสำหรับทุกคน การวิเคราะห์ทางเทคนิค: ค่าเฉลี่ยเคลื่อนไหวส่วนใหญ่รูปแบบกราฟแสดงการแปรผันของราคาในรูปแบบต่างๆ ซึ่งอาจทำให้ผู้ค้าได้รับความคิดในเรื่องแนวโน้มความปลอดภัยโดยรวม หนึ่งวิธีง่ายๆที่ผู้ค้าใช้ในการต่อสู้นี้คือการใช้ค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่คือราคาเฉลี่ยของการรักษาความปลอดภัยในช่วงเวลาที่กำหนด โดยการวางแผนการรักษาความปลอดภัยราคาเฉลี่ยการเคลื่อนไหวของราคาจะเรียบออก เมื่อความผันผวนแบบวันต่อวันจะถูกเอาออกผู้ค้าจะสามารถระบุแนวโน้มที่แท้จริงได้ดีขึ้นและเพิ่มความเป็นไปได้ที่จะใช้ประโยชน์ได้ ประเภทของค่าเฉลี่ยเคลื่อนที่มีค่าเฉลี่ยเคลื่อนที่หลายแบบแตกต่างกันไปตามที่คำนวณ แต่วิธีตีความค่าเฉลี่ยแต่ละค่ายังคงเหมือนเดิม การคำนวณมีความแตกต่างกันเพียงอย่างเดียวกับการถ่วงน้ำหนักที่พวกเขาวางไว้กับข้อมูลราคาขยับจากน้ำหนักที่เท่ากันของแต่ละจุดราคาไปเป็นน้ำหนักที่มากขึ้นเมื่อเทียบกับข้อมูลล่าสุด สามประเภทที่พบมากที่สุดของค่าเฉลี่ยเคลื่อนที่อยู่ที่ง่ายๆ เชิงเส้นและเลขชี้กำลัง Simple Moving Average (SMA) นี่เป็นวิธีที่นิยมใช้ในการคำนวณค่าเฉลี่ยเคลื่อนที่ของราคา ใช้เวลาเพียงผลรวมของราคาปิดที่ผ่านมาในช่วงเวลาและหารผลตามจำนวนราคาที่ใช้ในการคำนวณ ตัวอย่างเช่นในค่าเฉลี่ยเคลื่อนที่ 10 วันราคาปิดสุดท้าย 10 รายการจะรวมเข้าด้วยกันและหารด้วย 10 ดังที่คุณเห็นในรูปที่ 1 ผู้ประกอบการค้าสามารถที่จะทำให้ค่าเฉลี่ยของการตอบสนองต่อการเปลี่ยนแปลงราคาโดยเฉลี่ยน้อยลงโดยการเพิ่มจำนวน ของรอบระยะเวลาที่ใช้ในการคำนวณ การเพิ่มจำนวนช่วงเวลาในการคำนวณเป็นวิธีที่ดีที่สุดในการวัดความแข็งแกร่งของแนวโน้มในระยะยาวและความเป็นไปได้ที่จะเกิดการย้อนกลับ หลายคนอ้างว่าประโยชน์ของค่าเฉลี่ยประเภทนี้มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีผลกระทบต่อผลลัพธ์โดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากขึ้นและควรมีการถ่วงน้ำหนักที่สูงขึ้น การวิพากษ์วิจารณ์ประเภทนี้เป็นหนึ่งในปัจจัยหลักที่นำไปสู่การประดิษฐ์รูปแบบอื่น ๆ ของค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยถ่วงน้ำหนักเชิงเส้นตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่นี้เป็นค่าเฉลี่ยที่น้อยที่สุดจากสามตัวและใช้เพื่อแก้ปัญหาเกี่ยวกับการถ่วงน้ำหนักเท่ากัน เส้นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเส้นตรงคำนวณจากผลรวมของราคาปิดทั้งหมดในช่วงเวลาหนึ่งและคูณด้วยตำแหน่งของจุดข้อมูลและหารด้วยผลรวมของจำนวนงวด ตัวอย่างเช่นในระยะเวลาห้าวันโดยถัวเฉลี่ยถ่วงน้ำหนักราคาปิดในปัจจุบันจะคูณด้วยห้าวันวานโดยสี่เป็นต้นจนกว่าจะถึงวันแรกในช่วงระยะเวลา ตัวเลขเหล่านี้จะถูกรวมกันและหารด้วยผลรวมของตัวคูณ ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential (EMA) การคำนวณค่าเฉลี่ยเคลื่อนที่นี้ใช้ปัจจัยที่ราบเรียบเพื่อให้น้ำหนักที่สูงขึ้นในจุดข้อมูลล่าสุดและถือว่ามีประสิทธิภาพมากกว่าค่าเฉลี่ยถ่วงน้ำหนักแบบเส้นตรง ไม่จำเป็นต้องมีความเข้าใจในการคำนวณสำหรับผู้ค้าส่วนใหญ่เนื่องจากส่วนใหญ่แพคเกจแผนภูมิทำคำนวณสำหรับคุณ สิ่งสำคัญที่สุดที่ต้องจดจำเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบเสวนาก็คือการตอบสนองต่อข้อมูลใหม่ ๆ เมื่อเทียบกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย การตอบสนองนี้เป็นหนึ่งในปัจจัยสำคัญที่ทำให้ค่าเฉลี่ยเคลื่อนที่ของทางเลือกในหมู่ผู้ค้าทางเทคนิคจำนวนมาก ดังที่เห็นในรูปที่ 2 EMA ระยะเวลา 15 วันจะเพิ่มขึ้นและลดลงเร็วกว่า SMA 15 ช่วง ความแตกต่างเล็กน้อยนี้ดูเหมือนจะไม่ค่อยมากนัก แต่เป็นปัจจัยสำคัญที่ต้องคำนึงถึงเนื่องจากอาจมีผลกระทบต่อ การใช้ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อระบุแนวโน้มในปัจจุบันและการกลับรายการแนวโน้มเช่นเดียวกับการตั้งค่าการสนับสนุนและระดับความต้านทาน ค่าเฉลี่ยเคลื่อนที่สามารถใช้เพื่อระบุได้อย่างรวดเร็วว่าการรักษาความปลอดภัยมีการเคลื่อนไหวในขาขึ้นหรือขาลงหรือไม่ขึ้นอยู่กับทิศทางของค่าเฉลี่ยเคลื่อนที่ ดังที่เห็นในรูปที่ 3 เมื่อค่าเฉลี่ยเคลื่อนที่เคลื่อนขึ้นสูงและราคาอยู่เหนือระดับความปลอดภัยจะอยู่ในแนวโน้มขาขึ้น ในทางกลับกันค่าเฉลี่ยเคลื่อนที่ที่หดตัวลงพร้อมกับราคาด้านล่างสามารถนำมาใช้เป็นสัญญาณขาลง อีกวิธีหนึ่งในการกำหนดโมเมนตัมคือการดูลำดับของค่าเฉลี่ยเคลื่อนที่สองเส้น เมื่อค่าเฉลี่ยระยะสั้นอยู่เหนือค่าเฉลี่ยระยะยาวแนวโน้มจะเพิ่มขึ้น ในทางกลับกันค่าเฉลี่ยระยะยาวที่สูงกว่าค่าเฉลี่ยระยะสั้นจะส่งผลให้แนวโน้มการปรับตัวลดลง การย้ายการพลิกกลับของค่าเฉลี่ยโดยเฉลี่ยจะเกิดขึ้นในสองวิธีหลัก ๆ คือเมื่อราคาเคลื่อนผ่านค่าเฉลี่ยเคลื่อนที่และเมื่อเคลื่อนที่ผ่านค่าไขว้ถัวเฉลี่ยเคลื่อนที่ สัญญาณแรกที่พบคือเมื่อราคาเคลื่อนผ่านค่าเฉลี่ยเคลื่อนที่ที่สำคัญ ตัวอย่างเช่นเมื่อราคาหลักทรัพย์ที่อยู่ในช่วงขาลงลดลงต่ำกว่าค่าเฉลี่ยเคลื่อนที่ในช่วง 50 เช่นในรูปที่ 4 จะเป็นสัญญาณว่าแนวโน้มขากลับอาจย้อนกลับ สัญญาณอื่น ๆ ของการกลับรายการแนวโน้มคือเมื่อค่าเฉลี่ยเคลื่อนที่หนึ่งตัวผ่านไปมาอีก ตัวอย่างเช่นที่คุณเห็นในรูปที่ 5 ถ้าค่าเฉลี่ยเคลื่อนที่ 15 วันสูงกว่าค่าเฉลี่ยเคลื่อนที่ 50 วันนั่นเป็นสัญญาณบวกที่ราคาจะเริ่มเพิ่มขึ้น หากระยะเวลาที่ใช้ในการคำนวณค่อนข้างสั้นตัวอย่างเช่น 15 และ 35 อาจส่งสัญญาณการกลับรายการในระยะสั้น ในทางกลับกันเมื่อค่าเฉลี่ยสองค่าที่มีกรอบเวลาที่ค่อนข้างยาว (เช่น 50 และ 200) จะใช้เพื่อแนะนำการเปลี่ยนแปลงในระยะยาว อีกวิธีหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่คือการระบุระดับการสนับสนุนและความต้านทาน ไม่ใช่เรื่องแปลกที่จะเห็นสต็อกที่ได้รับการล้มหยุดการลดลงและทิศทางย้อนกลับเมื่อมันกระทบการสนับสนุนของค่าเฉลี่ยเคลื่อนที่ที่สำคัญ การเคลื่อนที่ผ่านค่าเฉลี่ยเคลื่อนที่ที่สำคัญมักถูกใช้เป็นสัญญาณโดยผู้ค้าทางเทคนิคว่าเทรนด์กำลังถอยกลับ ตัวอย่างเช่นถ้าราคาพักผ่านเส้นค่าเฉลี่ยเคลื่อนที่ 200 วันในทิศทางที่ลดลงสัญญาณนี้จะเป็นสัญญาณว่าแนวโน้มขากลับกำลังย้อนกลับ ค่าเฉลี่ยเคลื่อนที่เป็นเครื่องมือที่มีประสิทธิภาพในการวิเคราะห์แนวโน้มด้านความปลอดภัย พวกเขาให้การสนับสนุนที่มีประโยชน์และจุดความต้านทานและใช้งานง่ายมาก กรอบเวลาที่พบบ่อยที่สุดที่ใช้เมื่อสร้างค่าเฉลี่ยเคลื่อนที่ ได้แก่ 200 วัน 100 วัน 50 วัน 20 วันและ 10 วัน ค่าเฉลี่ย 200 วันนับเป็นวัดที่ดีสำหรับปีการค้าขายซึ่งเป็นค่าเฉลี่ยครึ่งวันของ 100 วันซึ่งเป็นค่าเฉลี่ย 50 วันของไตรมาสโดยเฉลี่ยอยู่ที่ 20 วันต่อเดือนและ 10 วันเฉลี่ย 2 สัปดาห์ การเคลื่อนย้ายค่าเฉลี่ยช่วยให้ผู้ค้าทางเทคนิคสามารถเอื้ออำนวยต่อการเคลื่อนไหวของราคาในแต่ละวันซึ่งทำให้ผู้ค้ามองเห็นแนวโน้มราคาได้ชัดเจนยิ่งขึ้น จนถึงตอนนี้เรามุ่งเน้นการเคลื่อนไหวของราคาผ่านแผนภูมิและค่าเฉลี่ย ในส่วนถัดไปดูเทคนิคอื่น ๆ ที่ใช้เพื่อยืนยันการเคลื่อนไหวของราคาและรูปแบบค่าเฉลี่ยการคำนวณ - ค่าเฉลี่ยเคลื่อนที่ที่ง่ายและค่าเฉลี่ย - การแนะนำแบบง่ายและแบบเสวนาการปรับค่าเฉลี่ยเคลื่อนที่โดยใช้ข้อมูลราคาเพื่อสร้างตัวบ่งชี้แนวโน้มตาม พวกเขาไม่ได้คาดการณ์ทิศทางราคา แต่กำหนดทิศทางปัจจุบันที่มีความล่าช้า การเลื่อนค่าเฉลี่ยของความล่าช้าเนื่องจากขึ้นอยู่กับราคาในอดีต แม้ว่าความล่าช้านี้ค่าเฉลี่ยเคลื่อนที่จะช่วยให้การดำเนินการด้านราคาเรียบและกรองเสียงรบกวน พวกเขายังเป็นตัวสร้างสำหรับตัวชี้วัดทางเทคนิคและการซ้อนทับอื่น ๆ อีกมากมายเช่นกลุ่ม Bollinger Bands MACD และ Oscillator McClellan ค่าเฉลี่ยเคลื่อนที่สองประเภทคือ Moving Average เฉลี่ย (SMA) และ Exponential Moving Average (EMA) ค่าเฉลี่ยเคลื่อนที่เหล่านี้สามารถใช้เพื่อระบุทิศทางของแนวโน้มหรือกำหนดระดับการสนับสนุนและความต้านทานที่อาจเกิดขึ้น กราฟของ SMA และ EMA มีดังนี้ Simple Moving Average Calculation ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยคำนวณโดยใช้ราคาเฉลี่ยของการรักษาความปลอดภัยในช่วงเวลาที่ระบุ ค่าเฉลี่ยเคลื่อนที่ส่วนใหญ่จะขึ้นอยู่กับราคาปิด ค่าเฉลี่ยเคลื่อนที่ 5 วันเป็นผลรวมของราคาปิดห้าวันหารด้วยห้า เป็นชื่อที่แสดงถึงค่าเฉลี่ยเคลื่อนที่ที่เป็นค่าเฉลี่ยที่เคลื่อนที่ได้ ข้อมูลเก่าจะถูกลดลงเนื่องจากมีข้อมูลใหม่มาให้ นี่เป็นสาเหตุให้ค่าเฉลี่ยเคลื่อนที่ไปตามช่วงเวลา ด้านล่างเป็นตัวอย่างของค่าเฉลี่ยเคลื่อนที่ 5 วันที่มีการเปลี่ยนแปลงไปสามวัน วันแรกของค่าเฉลี่ยเคลื่อนที่จะครอบคลุมช่วง 5 วันที่ผ่านมา วันที่สองของค่าเฉลี่ยเคลื่อนที่จะเว้นจุดข้อมูลแรก (11) และเพิ่มจุดข้อมูลใหม่ (16) วันที่สามของค่าเฉลี่ยเคลื่อนที่จะคงที่ต่อไปโดยทิ้งจุดข้อมูลแรก (12) และเพิ่มจุดข้อมูลใหม่ (17) ในตัวอย่างข้างต้นราคาค่อยๆเพิ่มขึ้นจาก 11 เป็น 17 ในช่วงเจ็ดวัน สังเกตว่าค่าเฉลี่ยเคลื่อนที่จะเพิ่มขึ้นจาก 13 เป็น 15 ในช่วงการคำนวณสามวัน นอกจากนี้โปรดสังเกตด้วยว่าค่าเฉลี่ยเคลื่อนที่แต่ละรายการต่ำกว่าราคาล่าสุด ตัวอย่างเช่นค่าเฉลี่ยเคลื่อนที่ของวันที่หนึ่งเท่ากับ 13 และราคาสุดท้ายคือ 15 วันราคาในช่วง 4 วันก่อนหน้านี้ลดลงและนี่เป็นสาเหตุให้ค่าเฉลี่ยเคลื่อนที่ล่าช้า การคำนวณเฉลี่ยที่เพิ่มขึ้นชี้แจงค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวชี้วัดจะลดความล่าช้าโดยการใช้น้ำหนักมากขึ้นกับราคาล่าสุด การถ่วงน้ำหนักที่ใช้กับราคาล่าสุดขึ้นอยู่กับจำนวนงวดในค่าเฉลี่ยเคลื่อนที่ มีสามขั้นตอนในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเสวนา ขั้นแรกคำนวณค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) จะต้องเริ่มต้นที่ไหนสักแห่งดังนั้นค่าเฉลี่ยเคลื่อนที่แบบเรียบจะถูกใช้เป็น EMA ของช่วงเวลาก่อนหน้าในการคำนวณครั้งแรก สองคำนวณตัวคูณการถ่วงน้ำหนัก ขั้นที่สามคำนวณค่าเฉลี่ยเคลื่อนที่แบบเสวนา สูตรด้านล่างมีไว้สำหรับ EMA 10 วัน ค่าเฉลี่ยการเคลื่อนย้ายเลขคณิต 10 ช่วงมีค่าเป็น 18.18 ตามราคาล่าสุด EMA 10 ระยะเวลาสามารถเรียกได้ว่าเป็น EMA 18.18 EMA 20 ระยะเวลาใช้การชั่งน้ำหนัก 9.52 กับราคาล่าสุด (2 (201) .0952) สังเกตว่าการชั่งน้ำหนักในช่วงเวลาที่สั้นลงนั้นมากกว่าการชั่งน้ำหนักในช่วงเวลาที่ยาวขึ้น ในความเป็นจริงการถ่วงน้ำหนักลดลงครึ่งหนึ่งทุกครั้งที่ช่วงเวลาเฉลี่ยที่เคลื่อนที่ได้สองเท่า หากคุณต้องการให้เราเป็นเปอร์เซ็นต์เฉพาะสำหรับ EMA คุณสามารถใช้สูตรนี้เพื่อแปลงเป็นช่วงเวลาจากนั้นป้อนค่านั้นเป็นพารามิเตอร์ของ EMA0: ด้านล่างเป็นตัวอย่างของสเปรดชีตที่ใช้ค่าเฉลี่ยเคลื่อนที่ 10 วันและค่าเฉลี่ยเคลื่อนที่ 10- day สำหรับ Intel ค่าเฉลี่ยเคลื่อนที่เฉลี่ยอยู่ที่ตรงและต้องการคำอธิบายเล็กน้อย ค่าเฉลี่ยของวันที่ 10 วันมีการเคลื่อนไหวเพียงเล็กน้อยเมื่อราคาใหม่เข้าสู่ตลาดและราคาเก่าร่วงลง ค่าเฉลี่ยเคลื่อนที่แบบทึบจะขึ้นต้นด้วยค่าเฉลี่ยเคลื่อนที่อย่างง่าย (22.22) ในการคำนวณครั้งแรก หลังจากการคำนวณครั้งแรกสูตรปกติจะใช้เวลามากกว่า เนื่องจาก EMA เริ่มต้นด้วยค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายค่าที่แท้จริงจะไม่ได้รับรู้จนกว่าจะถึง 20 งวดในภายหลัง กล่าวอีกนัยหนึ่งค่าในสเปรดชีต Excel อาจแตกต่างจากค่าแผนภูมิเนื่องจากระยะเวลามองย้อนกลับสั้น สเปรดชีทนี้จะย้อนกลับไป 30 รอบซึ่งหมายความว่าผลกระทบของค่าเฉลี่ยเคลื่อนที่แบบง่ายๆมีระยะเวลา 20 ช่วงที่จะกระจายไป StockCharts ย้อนกลับไปอย่างน้อย 250 รอบ (โดยทั่วไปมากขึ้น) สำหรับการคำนวณของตนดังนั้นผลกระทบของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายในการคำนวณครั้งแรกมีการกระจายอย่างสิ้นเชิง ปัจจัยความล่าช้ายิ่งค่าเฉลี่ยเคลื่อนที่สูงเท่าไหร่ยิ่งเท่าไร ค่าเฉลี่ยเลขคณิต 10 วันจะกอดราคาได้ค่อนข้างใกล้เคียงกันและจะเลี้ยวไปไม่นานหลังจากที่ราคาเปลี่ยนไป ค่าเฉลี่ยการเคลื่อนที่โดยรวมสั้น ๆ เหมือนเรือเร็ว - มีความว่องไวและรวดเร็วในการเปลี่ยนแปลง ในทางตรงกันข้ามค่าเฉลี่ยเคลื่อนที่ 100 วันมีข้อมูลที่ผ่านมาจำนวนมากที่ทำให้การทำงานช้าลง ค่าเฉลี่ยเคลื่อนที่ที่ยาวขึ้นเป็นเหมือนเรือบรรทุกน้ำมันในมหาสมุทร - เซื่องซึมและชะลอการเปลี่ยนแปลง การเคลื่อนไหวของราคาที่ยาวขึ้นและยาวนานขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ 100 วันเพื่อเปลี่ยนเส้นทาง กราฟด้านบนแสดง SampP 500 ETF โดยมี EMA 10 วันใกล้เคียงกับราคาและ SMA 100 วันที่สูงขึ้น แม้จะมีการลดลงในเดือนมกราคมถึงเดือนกุมภาพันธ์ แต่ SMA 100 วันก็ยังไม่ปิดลง SMA 50 วันเหมาะกับบางช่วงระหว่างค่าเฉลี่ยเคลื่อนที่ 10 และ 100 วันเมื่อพูดถึงปัจจัยล่าช้า ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและเป็นเส้นตรงแม้ว่าจะมีความแตกต่างที่ชัดเจนระหว่างค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและค่าเฉลี่ยเคลื่อนที่แบบเสวนาอย่างหนึ่งก็ไม่จำเป็นต้องดีกว่าอีก ค่าเฉลี่ยเคลื่อนที่ที่มีนัยสำคัญมีความล่าช้าน้อยลงและมีความอ่อนไหวต่อราคาล่าสุดและการเปลี่ยนแปลงราคาล่าสุด ค่าเฉลี่ยเลขยกกำลังแบบ Exponential จะเปลี่ยนตัวก่อนค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเป็นค่าเฉลี่ยที่แท้จริงของราคาสำหรับช่วงเวลาทั้งหมด ดังนั้นค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายอาจเหมาะสมกว่าในการระบุระดับการสนับสนุนหรือความต้านทาน การย้ายการตั้งค่าเฉลี่ยขึ้นอยู่กับวัตถุประสงค์ลักษณะการวิเคราะห์และขอบฟ้าเวลา Chartists ควรทดลองทั้งสองประเภทของค่าเฉลี่ยเคลื่อนที่และระยะเวลาที่ต่างกันเพื่อหาพอดีที่ดีที่สุด กราฟด้านล่างแสดงให้เห็นว่า IBM มี SMA 50 วันเป็นสีแดงและ EMA 50 วันเป็นสีเขียว ทั้งสองจุดในช่วงปลายเดือนมกราคม แต่การลดลงของ EMA มีความคมชัดกว่าการลดลงของ SMA EMA เปิดขึ้นในกลางเดือนกุมภาพันธ์ แต่ SMA ยังคงลดลงไปจนถึงสิ้นเดือนมีนาคม สังเกตว่า SMA เปิดขึ้นภายในหนึ่งเดือนหลังจาก EMA ความยาวและระยะเวลาความยาวของค่าเฉลี่ยเคลื่อนที่ขึ้นอยู่กับวัตถุประสงค์ในการวิเคราะห์ ระยะสั้นการเคลื่อนไหวระยะสั้น (5-20 ช่วง) เหมาะสมกับแนวโน้มระยะสั้นและการซื้อขาย กลุ่มผู้ชาตินิยมที่สนใจในแนวโน้มในระยะกลางจะเลือกใช้ค่าเฉลี่ยเคลื่อนที่ที่ยาวขึ้นซึ่งอาจขยายได้ 20-60 ช่วง นักลงทุนระยะยาวจะชอบเคลื่อนไหวโดยเฉลี่ยที่มีระยะเวลาตั้งแต่ 100 ขึ้นไป ความยาวเฉลี่ยที่เคลื่อนที่ได้บางส่วนมีความนิยมมากกว่าคนอื่น ๆ ค่าเฉลี่ยเคลื่อนที่ 200 วันอาจเป็นที่นิยมมากที่สุด เนื่องจากความยาวของมันเป็นอย่างชัดเจนในระยะยาวค่าเฉลี่ยเคลื่อนที่ ถัดไปค่าเฉลี่ยเคลื่อนที่ 50 วันค่อนข้างเป็นที่นิยมสำหรับแนวโน้มระยะกลาง นักเกรเทนหลายคนใช้ค่าเฉลี่ยเคลื่อนที่ 50 วันและ 200 วันด้วยกัน ระยะสั้นค่าเฉลี่ยเคลื่อนที่ 10 วันเป็นที่นิยมมากในอดีตเนื่องจากสามารถคำนวณได้ง่าย หนึ่งเพียงแค่เพิ่มตัวเลขและย้ายจุดทศนิยม การระบุแนวโน้ม (Trend Identification) สัญญาณเดียวกันสามารถสร้างได้โดยใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายหรือแบบเสแสร้ง ตามที่ระบุไว้ข้างต้นการตั้งค่าจะขึ้นอยู่กับแต่ละบุคคล ตัวอย่างด้านล่างนี้จะใช้ทั้งค่าเฉลี่ยเคลื่อนที่แบบง่ายและแบบทึบ ค่าเฉลี่ยเคลื่อนที่ระยะจะใช้กับค่าเฉลี่ยเคลื่อนที่แบบธรรมดาและแบบทึบ ทิศทางของค่าเฉลี่ยเคลื่อนที่จะบ่งบอกถึงข้อมูลที่สำคัญเกี่ยวกับราคา ค่าเฉลี่ยเคลื่อนที่ที่เพิ่มขึ้นแสดงให้เห็นว่าโดยทั่วไปราคาจะเพิ่มขึ้น ค่าเฉลี่ยถล่มที่ลดลงบ่งชี้ว่าราคาเฉลี่ยลดลง ค่าเฉลี่ยการเคลื่อนไหวระยะยาวที่เพิ่มขึ้นสะท้อนถึงแนวโน้มขาขึ้นในระยะยาว ค่าเฉลี่ยเคลื่อนที่ที่ลดลงในระยะยาวสะท้อนถึงแนวโน้มขาลงในระยะยาว แผนภูมิด้านบนแสดง 3M (MMM) โดยมีค่าเฉลี่ยเลขยกกำลัง 150 วัน ตัวอย่างนี้แสดงให้เห็นว่าค่าเฉลี่ยเคลื่อนที่ที่ใช้งานได้ดีเพียงใดเมื่อแนวโน้มแข็งแกร่ง EMA 150 วันปิดลงในเดือนพฤศจิกายน 2550 และอีกครั้งในเดือนมกราคม 2551 สังเกตเห็นว่ามีการปรับตัวลดลง 15 ครั้งเพื่อเปลี่ยนทิศทางของค่าเฉลี่ยเคลื่อนที่นี้ ตัวชี้วัดที่ล่าช้าเหล่านี้ระบุการพลิกกลับของแนวโน้มตามที่เกิดขึ้น (ที่ดีที่สุด) หรือหลังจากเกิดขึ้น (ที่แย่ที่สุด) MMM ยังคงลดลงในเดือนมีนาคม 2009 และเพิ่มขึ้น 40-50 สังเกตว่า EMA 150 วันไม่เปิดขึ้นจนกว่าจะถึงจุดสูงสุด อย่างไรก็ตามเมื่อ MMM ยังคงทำยอดขายต่อไปอีก 12 เดือน การย้ายค่าเฉลี่ยทำงานได้เรื่อย ๆ ตามแนวโน้มที่แข็งแกร่ง Double Crossovers ค่าเฉลี่ยเคลื่อนที่สองตัวสามารถใช้ร่วมกันเพื่อสร้างสัญญาณไขว้ ในการวิเคราะห์ทางเทคนิคของตลาดการเงิน John Murphy เรียกวิธีนี้ว่าไขว้แบบคู่ ไขว้คู่มีค่าเฉลี่ยเคลื่อนที่สั้น ๆ และมีค่าเฉลี่ยเคลื่อนที่ค่อนข้างยาว เช่นเดียวกับค่าเฉลี่ยเคลื่อนที่ทั้งหมดความยาวโดยทั่วไปของค่าเฉลี่ยเคลื่อนที่จะกำหนดระยะเวลาของระบบ ระบบที่ใช้ EMA 5 วันและ EMA 35 วันจะถือว่าเป็นระยะสั้น ระบบที่ใช้ SMA 50 วันและ SMA 200 วันจะถือว่าเป็นระยะปานกลางหรืออาจเป็นระยะเวลานาน การครอสโอเวอร์แบบรุกจะเกิดขึ้นเมื่อค่าเฉลี่ยเคลื่อนที่ที่สั้นลงเหนือค่าเฉลี่ยเคลื่อนที่ที่ยาวขึ้น นี้เรียกว่าเป็นกากบาทสีทอง การไขว้หยาบคายเกิดขึ้นเมื่อค่าเฉลี่ยเคลื่อนที่สั้นลงต่ำกว่าค่าเฉลี่ยเคลื่อนที่ที่ยาวขึ้น นี้เรียกว่าข้ามตาย การย้ายค่าเฉลี่ยของไขว้ให้สัญญาณค่อนข้างช้า อย่างไรก็ตามระบบมีตัวบ่งชี้อยู่สองตัว ระยะเวลาเฉลี่ยที่ยาวนานขึ้นความล่าช้าในสัญญาณ สัญญาณเหล่านี้ทำงานได้ดีเมื่อมีแนวโน้มดีขึ้น อย่างไรก็ตามระบบครอสโอเวอร์เฉลี่ยเคลื่อนที่จะผลิตจำนวนมากของ whipsaws ในกรณีที่ไม่มีแนวโน้มที่แข็งแกร่ง นอกจากนี้ยังมีวิธีไขว้แบบไขว้ซึ่งมีค่าเฉลี่ยเคลื่อนที่สามค่า อีกครั้งสัญญาณจะถูกสร้างขึ้นเมื่อค่าเฉลี่ยเคลื่อนที่ที่สั้นที่สุดข้ามค่าเฉลี่ยเคลื่อนที่อีกสองเส้น ระบบไขว้แบบทริปเปิ้ลที่เรียบง่ายอาจเกี่ยวข้องกับค่าเฉลี่ยเคลื่อนที่ 5 วัน 10 วันและ 20 วัน แผนภูมิด้านบนแสดง Home Depot (HD) ด้วย EMA 10 วัน (เส้นสีเขียว) และ EMA 50 วัน (เส้นสีแดง) เส้นสีดำปิดทุกวัน การใช้ครอสโอเวอร์เฉลี่ยเคลื่อนที่จะส่งผลให้เกิด whipsaws สามตัวก่อนที่จะมีการค้าขายที่ดี EMA 10 วันพังลงมาต่ำกว่า EMA 50 วันในช่วงปลายเดือนตุลาคม (1) แต่ไม่นานนักเมื่อวานนี้ (10) กลับมาอยู่ในช่วงกลางเดือนพฤศจิกายน (2) การข้ามนี้ใช้เวลานาน แต่ครอสโอเวอร์แบบลบต่อไปในเดือนมกราคม (3) เกิดขึ้นใกล้ระดับราคาในปลายเดือนพฤศจิกายนซึ่งส่งผลให้เกิดการแสลงอีกครั้ง เครื่องหมายกากบาทดังกล่าวไม่อยู่ในช่วงที่ EMA 10 วันกลับมาอยู่เหนือ 50 วันในอีกไม่กี่วันต่อมา (4) หลังจากสัญญาณไม่ดีสามสัญญาณสัญญาณที่สี่คาดว่าจะมีการเคลื่อนไหวที่แข็งแกร่งเมื่อหุ้นพุ่งขึ้นสูงกว่า 20 แห่งมีสองประเด็นที่นี่ แรกไขว้มีแนวโน้มที่จะ whipsaw สามารถใช้ตัวกรองราคาหรือเวลาเพื่อช่วยป้องกันไม่ให้ whipsaws ผู้ค้าอาจต้องการครอสโอเวอร์ 3 วันก่อนทำเครื่องหมายหรือต้องการให้ EMA 10 วันเคลื่อนตัวเหนือเส้น EMA 50 วันตามจำนวนที่กำหนดก่อนทำการค้า ประการที่สอง MACD สามารถใช้ระบุและหาจำนวนไขว้ได้ MACD (10,50,1) จะแสดงเส้นที่แสดงถึงความแตกต่างระหว่างค่าเฉลี่ยเคลื่อนที่แบบทแยงมุมสองค่า MACD เปลี่ยนเป็นค่าบวกระหว่างช่วงกากบาทสีทองและค่าลบระหว่างช่วงที่ตายแล้ว Oscillator ราคาร้อยละ (PPO) สามารถใช้วิธีเดียวกันเพื่อแสดงความแตกต่างของเปอร์เซ็นต์ โปรดทราบว่า MACD และ PPO ใช้ค่าเฉลี่ยเคลื่อนที่ที่เป็นเส้นตรงและไม่ตรงกับค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย แผนภูมินี้แสดง Oracle (ORCL) พร้อมกับ EMA 50 วัน EMA 200 วันและ MACD (50,200,1) ในช่วงระยะเวลา 12 ปีมีการครอสโอเวอร์เฉลี่ย 4 ช่วง สามประการแรกทำให้เกิดเสียงกระหึ่มหรือไม่ดี แนวโน้มอย่างต่อเนื่องเริ่มขึ้นด้วยการครอสโอเวอร์ที่ 4 เมื่อ ORCL ก้าวสู่ช่วงกลางยุค 20 อีกครั้งการขยับไขว้เฉลี่ยทำงานได้ดีเมื่อมีแนวโน้มแข็งแกร่ง แต่สร้างความสูญเสียในกรณีที่ไม่มีแนวโน้ม ราคา Crossovers ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการสร้างสัญญาณด้วย crossovers ราคาที่เรียบง่าย สัญญาณรั้นเกิดขึ้นเมื่อราคาเคลื่อนตัวเหนือค่าเฉลี่ยเคลื่อนที่ สัญญาณหยาบคายถูกสร้างขึ้นเมื่อราคาเคลื่อนตัวต่ำกว่าค่าเฉลี่ยเคลื่อนที่ ไขว้ราคาสามารถรวมกันเพื่อการค้าภายในแนวโน้มที่ใหญ่กว่า ค่าเฉลี่ยที่ยาวขึ้นจะกำหนดค่าเสียงสำหรับแนวโน้มที่ใหญ่ขึ้นและใช้ค่าเฉลี่ยเคลื่อนที่ที่สั้นลงเพื่อสร้างสัญญาณ หนึ่งจะมองหาการข้ามราคารั้นเฉพาะเมื่อราคามีอยู่แล้วสูงกว่าค่าเฉลี่ยเคลื่อนที่อีกต่อไป นี้จะซื้อขายในความกลมกลืนกับแนวโน้มที่ใหญ่กว่า ตัวอย่างเช่นถ้าราคาสูงกว่าค่าเฉลี่ยเคลื่อนที่ 200 วันนักเก็งกำไรจะเน้นเฉพาะสัญญาณเมื่อราคาเคลื่อนตัวเหนือค่าเฉลี่ยเคลื่อนที่ 50 วันเท่านั้น เห็นได้ชัดว่าการเคลื่อนไหวต่ำกว่าค่าเฉลี่ยเคลื่อนที่ 50 วันจะเป็นสัญญาณก่อนเช่นสัญญาณ แต่จะลดลงเช่นกันเนื่องจากแนวโน้มที่ใหญ่ขึ้น การข้ามแบบหยาบคายจะช่วยแนะนำการฟื้นตัวที่ใหญ่ขึ้น การข้ามกลับเหนือเส้นค่าเฉลี่ยเคลื่อนที่ 50 วันจะส่งสัญญาณถึงการปรับตัวดีขึ้นของราคาและความต่อเนื่องของแนวโน้มขาขึ้นที่ใหญ่ขึ้น กราฟถัดไปแสดง Emerson Electric (EMR) พร้อมกับ EMA 50 วันและ EMA 200 วัน ราคาหุ้นปรับตัวขึ้นเหนือเส้นค่าเฉลี่ยเคลื่อนที่ 200 วันในเดือนส. ค. มีการปรับตัวลงมาต่ำกว่า 50 วัน EMA ในช่วงต้นเดือนพฤศจิกายนและอีกครั้งในช่วงต้นเดือนกุมภาพันธ์ ราคาปรับตัวลงมาอย่างรวดเร็วเหนือเส้น EMA 50 วันเพื่อให้สัญญาณรั้น (ลูกศรสีเขียว) สอดคล้องกับแนวโน้มขาขึ้นที่ใหญ่ขึ้น MACD (1,50,1) แสดงในหน้าต่างตัวบ่งชี้เพื่อยืนยันการข้ามผ่านด้านล่างหรือด้านล่าง EMA 50 วัน EMA เท่ากับ 1 วันเท่ากับราคาปิด MACD (1,50,1) เป็นบวกเมื่อระยะใกล้อยู่เหนือเส้น EMA 50 วันและมีค่าเป็นลบเมื่อระยะใกล้อยู่ใต้ EMA 50 วัน แนวรองรับและความต้านทานการเคลื่อนไหวเฉลี่ยยังสามารถทำหน้าที่เป็นแนวรับในแนวรองรับและแนวต้านระยะสั้นได้ แนวรองรับระยะสั้นอาจได้รับแรงหนุนจากเส้นค่าเฉลี่ยเคลื่อนที่ 20 วันซึ่งใช้ในกลุ่ม Bollinger Bands แนวรองรับระยะยาวอาจได้รับแรงสนับสนุนจากค่าเฉลี่ยเคลื่อนที่ระยะสั้น 200 วันซึ่งเป็นค่าเฉลี่ยระยะยาวที่เป็นที่นิยมมากที่สุด หากความเป็นจริงค่าเฉลี่ยเคลื่อนที่ 200 วันอาจให้การสนับสนุนหรือความต้านทานได้เนื่องจากมีการใช้กันอย่างแพร่หลาย เกือบจะเหมือนกับคำทำนายด้วยตัวคุณเอง แผนภูมิข้างต้นแสดง NY Composite โดยมีค่าเฉลี่ยเคลื่อนที่ 200 วันจากกลางปี ​​2547 จนถึงสิ้นปีพ. ศ. 2551 การสนับสนุน 200 วันให้การสนับสนุนหลายครั้งในช่วงก่อน เมื่อแนวโน้มผันผวนด้วยแรงสนับสนุนด้านบนคู่ค่าเฉลี่ยเคลื่อนที่ 200 วันทำหน้าที่เป็นแนวรับรอบ 9500 อย่าคาดหวังว่าการสนับสนุนที่ถูกต้องและระดับความต้านทานจากค่าเฉลี่ยเคลื่อนที่โดยเฉพาะค่าเฉลี่ยเคลื่อนที่ที่ยาวขึ้น ตลาดมีแรงผลักดันจากความรู้สึกซึ่งทำให้พวกเขามีแนวโน้มที่จะถูกตัดทอน แทนระดับที่แน่นอนค่าเฉลี่ยเคลื่อนที่สามารถใช้เพื่อระบุเขตการสนับสนุนหรือความต้านทานได้ ข้อสรุปข้อดีของการใช้ค่าเฉลี่ยเคลื่อนที่จะต้องมีการชั่งน้ำหนักกับข้อเสีย ค่าเฉลี่ยเคลื่อนที่หมายถึงแนวโน้มหรือล้าหลังตัวชี้วัดที่จะเป็นขั้นตอนต่อไปเสมอ นี้ไม่จำเป็นต้องเป็นสิ่งที่ไม่ดี หลังจากที่ทุกแนวโน้มเป็นเพื่อนของคุณและที่ดีที่สุดคือการค้าในทิศทางของแนวโน้ม การเคลื่อนไหวโดยเฉลี่ยช่วยให้มั่นใจได้ว่าผู้ประกอบการรายย่อยสอดคล้องกับแนวโน้มในปัจจุบัน แม้ว่าเทรนด์จะเป็นเพื่อนของคุณ แต่หลักทรัพย์ก็ใช้จ่ายในช่วงการซื้อขายเป็นอย่างมากซึ่งทำให้ค่าเฉลี่ยเคลื่อนที่ไม่ได้ผล เมื่ออยู่ในแนวโน้มค่าเฉลี่ยเคลื่อนที่จะทำให้คุณได้รับ แต่ก็ให้สัญญาณช้า อย่าคาดหวังที่จะขายที่ด้านบนและซื้อที่ด้านล่างโดยใช้ค่าเฉลี่ยเคลื่อนที่ เช่นเดียวกับเครื่องมือวิเคราะห์ทางเทคนิคส่วนใหญ่ค่าเฉลี่ยเคลื่อนที่ไม่ควรใช้ด้วยตนเอง แต่ร่วมกับเครื่องมือเสริมอื่น ๆ Chartists สามารถใช้ค่าเฉลี่ยเคลื่อนที่เพื่อกำหนดแนวโน้มโดยรวมและใช้ RSI เพื่อกำหนดระดับซื้อเกินหรือ oversold การเพิ่มค่าเฉลี่ยเคลื่อนที่ไปยัง StockCharts Charts การย้ายค่าเฉลี่ยจะมีอยู่เป็นคุณลักษณะการวางซ้อนราคาบนโต๊ะทำงาน SharpCharts การใช้เมนูแบบเลื่อนลงแบบเลื่อนลงผู้ใช้สามารถเลือกค่าเฉลี่ยเคลื่อนที่แบบเรียบหรือค่าเฉลี่ยเคลื่อนที่แบบเสวนา พารามิเตอร์แรกใช้เพื่อกำหนดจำนวนช่วงเวลา คุณสามารถเพิ่มพารามิเตอร์ที่เป็นตัวเลือกเพื่อระบุฟิลด์ราคาที่ควรใช้ในการคำนวณ O สำหรับ Open, H สำหรับ High, L สำหรับ Low และ C สำหรับ Close ใช้เครื่องหมายจุลภาคเพื่อแยกพารามิเตอร์ คุณสามารถเพิ่มพารามิเตอร์อื่นที่จำเป็นเพื่อเปลี่ยนค่าเฉลี่ยเคลื่อนที่ไปทางซ้าย (อดีต) หรือทางขวา (อนาคต) ตัวเลขเชิงลบ (-10) จะเปลี่ยนค่าเฉลี่ยเคลื่อนที่ไปทางซ้าย 10 ช่วงเวลา จำนวนบวก (10) จะเปลี่ยนค่าเฉลี่ยเคลื่อนที่ไปทางขวา 10 ช่วงเวลา ค่าเฉลี่ยเคลื่อนที่หลายค่าสามารถวางซ้อนราคาได้โดยเพียงแค่เพิ่มอีกชั้นวางซ้อนลงในโต๊ะทำงาน สมาชิก StockCharts สามารถเปลี่ยนสีและสไตล์เพื่อแยกความแตกต่างระหว่างค่าเฉลี่ยเคลื่อนที่หลาย ๆ หลังจากเลือกตัวบ่งชี้แล้วให้เปิดตัวเลือกขั้นสูงโดยคลิกที่รูปสามเหลี่ยมสีเขียวเล็กน้อย นอกจากนี้ยังสามารถใช้ตัวเลือกขั้นสูงเพื่อเพิ่มการวางซ้อนค่าเฉลี่ยเคลื่อนไหวสำหรับตัวชี้วัดทางเทคนิคอื่น ๆ เช่น RSI, CCI และ Volume คลิกที่นี่เพื่อดูกราฟสดที่มีค่าเฉลี่ยเคลื่อนที่หลายค่า การใช้ Moving Averages with ScanCharts Scans นี่คือตัวอย่างการสแกนที่สมาชิก StockCharts สามารถใช้ในการสแกนหาสถานการณ์ต่างๆที่มีการเคลื่อนไหวโดยเฉลี่ยได้: Bullish Moving Average Cross: การสแกนนี้เป็นการค้นหาหุ้นที่มีค่าเฉลี่ยเคลื่อนที่ 150 วันที่เพิ่มขึ้น วัน EMA และ EMA 35 วัน ค่าเฉลี่ยเคลื่อนที่ 150 วันจะเพิ่มขึ้นตราบเท่าที่ราคาซื้อขายอยู่เหนือระดับ 5 วันก่อน เครื่องหมายกาชาดเกิดขึ้นเมื่อ EMA 5 วันเคลื่อนตัวเหนือเส้น EMA 35 วันได้เหนือระดับเฉลี่ย Bearish Moving Cross เฉลี่ย: การสแกนนี้จะมองหาหุ้นที่มีค่าเฉลี่ยเคลื่อนที่ที่ลดลง 150 วันและสัญญาณการชะลอตัวของ EMA 5 วันและ EMA 35 วัน ค่าเฉลี่ยเคลื่อนที่ 150 วันจะร่วงลงตราบเท่าที่ราคาซื้อขายอยู่ในระดับต่ำกว่า 5 วันที่ผ่านมา สัญญาณการซื้อขายขาดดุลเกิดขึ้นเมื่อ EMA 5 วันเคลื่อนตัวใต้ EMA 35 วันจากระดับเฉลี่ยที่สูงกว่า หนังสือของ John Murphy0 มีหนังสือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่และการใช้งานต่างๆ Murphy ครอบคลุมข้อดีและข้อเสียของการย้ายค่าเฉลี่ย นอกจากนี้เมอร์ฟี่ยังแสดงให้เห็นว่าค่าเฉลี่ยเคลื่อนที่โดยใช้ Bollinger Bands และระบบการซื้อขายช่องทางอย่างไร การวิเคราะห์ทางเทคนิคของตลาดการเงิน John MurphyMoving ค่าเฉลี่ย: อะไรคือตัวชี้วัดทางเทคนิคที่นิยมใช้มากที่สุดค่าเฉลี่ยเคลื่อนที่จะถูกใช้เพื่อวัดทิศทางของแนวโน้มในปัจจุบัน ค่าเฉลี่ยเคลื่อนที่ทุกประเภท (เขียนโดยทั่วไปในบทแนะนำนี้เป็น MA) คือผลทางคณิตศาสตร์ที่คำนวณโดยเฉลี่ยจำนวนจุดข้อมูลที่ผ่านมา เมื่อพิจารณาแล้วค่าเฉลี่ยที่เกิดขึ้นจะถูกวางแผนลงบนแผนภูมิเพื่อให้ผู้ค้าสามารถดูข้อมูลที่ราบรื่นแทนที่จะมุ่งเน้นไปที่ความผันผวนของราคาในแต่ละวันที่มีอยู่ในตลาดการเงินทั้งหมด รูปแบบที่ง่ายที่สุดของค่าเฉลี่ยเคลื่อนที่โดยทั่วไปหมายถึงค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย (SMA) โดยคำนวณค่าเฉลี่ยเลขคณิตของชุดค่าที่กำหนด ตัวอย่างเช่นในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันคุณจะเพิ่มราคาปิดจาก 10 วันที่ผ่านมาและหารผลตาม 10 ในรูปที่ 1 ผลรวมของราคาในช่วง 10 วันที่ผ่านมา (110) คือ หารด้วยจำนวนวัน (10) เพื่อให้ได้ค่าเฉลี่ย 10 วัน หากผู้ค้าต้องการเห็นค่าเฉลี่ย 50 วันแทนจะต้องมีการคำนวณประเภทเดียวกัน แต่จะรวมราคาในช่วง 50 วันที่ผ่านมา ค่าเฉลี่ยที่เกิดขึ้นด้านล่าง (11) คำนึงถึงจุดข้อมูล 10 จุดที่ผ่านมาเพื่อให้ผู้ค้าทราบว่าสินทรัพย์มีราคาเทียบกับ 10 วันที่ผ่านมาอย่างไร บางทีคุณอาจสงสัยว่าทำไมผู้ค้าทางเทคนิคเรียกเครื่องมือนี้ว่าเป็นค่าเฉลี่ยเคลื่อนที่และไม่ใช่แค่ค่าเฉลี่ยปกติ คำตอบก็คือเมื่อค่าใหม่มีพร้อมใช้งานจุดข้อมูลที่เก่าที่สุดต้องถูกลดลงจากชุดข้อมูลและจุดข้อมูลใหม่ ๆ ต้องมาเพื่อแทนที่ ดังนั้นชุดข้อมูลจึงมีการย้ายข้อมูลบัญชีใหม่ ๆ ไปเรื่อย ๆ วิธีการคำนวณนี้ช่วยให้แน่ใจได้ว่าจะมีการบันทึกข้อมูลปัจจุบันเท่านั้น ในรูปที่ 2 เมื่อมีการเพิ่มค่าใหม่ของชุดที่ 5 ช่องสีแดง (แทนจุดข้อมูล 10 จุดที่ผ่านมา) จะเลื่อนไปทางขวาและค่าสุดท้ายของ 15 จะถูกลดลงจากการคำนวณ เนื่องจากค่าที่ค่อนข้างเล็ก 5 จะแทนที่ค่าที่สูงถึง 15 คุณจึงคาดว่าจะเห็นค่าเฉลี่ยของการลดข้อมูลชุดซึ่งในกรณีนี้มีค่าตั้งแต่ 11 ถึง 10 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่เมื่อค่าของ MA ได้รับการคำนวณพวกเขาจะวางแผนลงบนแผนภูมิและเชื่อมต่อแล้วเพื่อสร้างเส้นค่าเฉลี่ยเคลื่อนที่ เส้นโค้งเหล่านี้มีอยู่ทั่วไปในแผนภูมิของผู้ค้าด้านเทคนิค แต่วิธีการใช้งานเหล่านี้อาจแตกต่างกันอย่างมาก (ในภายหลัง) ดังที่เห็นในรูปที่ 3 คุณสามารถเพิ่มค่าเฉลี่ยเคลื่อนที่ได้มากกว่าหนึ่งรายการในแผนภูมิใด ๆ โดยการปรับจำนวนช่วงเวลาที่ใช้ในการคำนวณ เส้นโค้งเหล่านี้ดูเหมือนจะเสียสมาธิหรือทำให้เกิดความสับสนในตอนแรก แต่คุณจะคุ้นเคยกับพวกเขาเมื่อเวลาผ่านไป เส้นสีแดงเป็นเพียงราคาเฉลี่ยในช่วง 50 วันที่ผ่านมาในขณะที่เส้นสีน้ำเงินเป็นราคาเฉลี่ยในช่วง 100 วันที่ผ่านมา ตอนนี้คุณเข้าใจว่าค่าเฉลี่ยเคลื่อนที่คืออะไรและแนะนำให้ใช้ค่าเฉลี่ยเคลื่อนที่ที่ต่างกันและดูว่าค่าเฉลี่ยเคลื่อนที่แตกต่างจากค่าเฉลี่ยเคลื่อนที่ที่กล่าวถึงก่อนหน้านี้เท่าไร ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเป็นที่นิยมอย่างมากของผู้ค้า แต่เป็นตัวบ่งชี้ทางเทคนิคทั้งหมดก็มีนักวิจารณ์ หลายคนอ้างว่าประโยชน์ของ SMA มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีน้ำหนักเท่ากันโดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากกว่าข้อมูลที่เก่ากว่าและควรมีอิทธิพลมากขึ้นต่อผลลัพธ์สุดท้าย ในการตอบสนองต่อคำวิจารณ์นี้ผู้ค้าเริ่มให้ความสำคัญกับข้อมูลล่าสุดซึ่งนำไปสู่การประดิษฐ์เครื่องคิดเลขใหม่ ๆ ประเภทต่างๆซึ่งเป็นที่นิยมมากที่สุดซึ่งเป็นค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) (สำหรับการอ่านเพิ่มเติมโปรดดูข้อมูลเบื้องต้นเกี่ยวกับค่าเฉลี่ยถ่วงน้ำหนักและความแตกต่างระหว่าง SMA กับ EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนาค่าเฉลี่ยเคลื่อนที่แบบเสวนาคือค่าเฉลี่ยเคลื่อนที่ที่ให้น้ำหนักมากกว่าราคาล่าสุดในความพยายามที่จะทำให้การตอบสนองดีขึ้น ข้อมูลใหม่ ๆ การเรียนรู้สมการที่ค่อนข้างซับซ้อนสำหรับการคำนวณ EMA อาจไม่จำเป็นสำหรับผู้ค้าจำนวนมากเนื่องจากเกือบทุกชุดรูปแบบแผนภูมิทำคำนวณสำหรับคุณ อย่างไรก็ตามสำหรับคุณ geeks คณิตศาสตร์ออกมีที่นี่สมการ EMA: เมื่อใช้สูตรในการคำนวณจุดแรกของ EMA คุณอาจสังเกตเห็นว่าไม่มีค่าที่จะใช้เป็น EMA ก่อนหน้านี้ ปัญหาเล็ก ๆ นี้สามารถแก้ไขได้โดยเริ่มต้นการคำนวณด้วยค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและต่อเนื่องโดยใช้สูตรด้านบนจากที่นั่น เราได้จัดเตรียมสเปรดชีตตัวอย่างไว้ในตัวอย่างชีวิตจริงในการคำนวณทั้งค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบเสวนา ความแตกต่างระหว่าง EMA และ SMA ตอนนี้คุณเข้าใจดีว่า SMA และ EMA คำนวณอย่างไรให้ลองดูว่าค่าเฉลี่ยเหล่านี้แตกต่างกันอย่างไร เมื่อพิจารณาการคำนวณ EMA คุณจะสังเกตเห็นว่าจุดข้อมูลสำคัญ ๆ อยู่ในจุดข้อมูลล่าสุดทำให้เป็นประเภทของค่าเฉลี่ยถ่วงน้ำหนัก ในรูปที่ 5 ตัวเลขของช่วงเวลาที่ใช้ในแต่ละค่าเฉลี่ยเหมือนกัน (15) แต่ EMA จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วขึ้น สังเกตว่า EMA มีมูลค่าสูงขึ้นเมื่อราคาเพิ่มขึ้นและลดลงเร็วกว่า SMA เมื่อราคาลดลง การตอบสนองนี้เป็นเหตุผลหลักที่ทำให้ผู้ค้าจำนวนมากต้องการใช้ EMA มากกว่า SMA อะไรที่แตกต่างกันระหว่างวันหมายถึงค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้ที่ปรับแต่งได้โดยสิ้นเชิงซึ่งหมายความว่าผู้ใช้สามารถเลือกช่วงเวลาที่ต้องการได้อย่างอิสระเมื่อสร้างค่าเฉลี่ย ช่วงเวลาที่ใช้บ่อยที่สุดในการเคลื่อนที่โดยเฉลี่ยอยู่ที่ 15, 20, 30, 50, 100 และ 200 วัน ช่วงเวลาสั้น ๆ ที่ใช้ในการสร้างค่าเฉลี่ยความละเอียดอ่อนมากขึ้นคือการเปลี่ยนแปลงราคา ยิ่งช่วงเวลาที่ยาวนานขึ้นเท่าไรก็ยิ่งอ่อนไหวหรือเรียบเนียนขึ้นเท่านั้นโดยเฉลี่ยแล้ว ไม่มีกรอบเวลาที่เหมาะสมที่จะใช้เมื่อตั้งค่าค่าเฉลี่ยเคลื่อนที่ของคุณ วิธีที่ดีที่สุดในการพิจารณาว่ารูปแบบใดเหมาะกับตัวคุณมากที่สุดคือการทดสอบกับช่วงเวลาต่างๆจนกว่าคุณจะพบกับช่วงเวลาที่เหมาะสมกับกลยุทธ์ของคุณ

No comments:

Post a Comment